Noise-Based Testing and Analysis of Multi-threaded

C/C++ Programs on the Binary Level

Jan Fiedor, Tomas Vojnar

Brno University of Technology (BUT)

PADTAD, July 16, 2012

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 1/29

Plan of the talk

@ Introduction

Jan Fiedor (BUT) Noise-Based Testing and Analysis , July 16, 2012

ction

@ Testing

@ One of the most common ways to discover errors

@ Detects only errors witnessed in the given execution

@ Many repetitions needed due to the non-deterministic thread scheduling

@ When done naively, the repeated execution needs not differ much, and
many errors may be missed

@ Dynamic analysis
@ Extrapolates the witnessed behaviour
@ May detect errors not witnessed in the given execution
@ Needs to insert some monitoring code into the program

@ Noise injection
@ Disturbs the scheduling of threads to see uncommon executions

@ Increases the chances to detect errors
o Useful for both testing and dynamic analysis

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012

Plan of the talk

© Monitoring Multi-threaded C/C++ Programs

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 4/29

Monitoring C/C++ Programs

Monitoring (and noise injection) code might be inserted on several levels:
@ Source code level
o Code inserted to the source code before compilation
@ Level of the intermediate code
o Code inserted to the compiler’s intermediate code during compilation
@ Binary level
o Code inserted to the program’s binary after compilation

On the binary level, the monitoring code might be inserted:
@ By modifying the binary of a program before it is executed
o Static binary instrumentation
@ By modifying the binary at the run-time in the memory
@ Dynamic binary instrumentation

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012

Monitoring C/C++ Programs on the Binary Level

We use dynamic binary instrumentation to insert the monitoring code:

o Advantages:

No need to have the source code of the program

More precise (insertion after all optimisations)

More transparent (no need to have 2 separate versions of libraries)
Easy handling of assembly code inserted to C/C++ code

Easy access to low level information (e.g. register allocations)
Can handle self-generating and self-modifying code

<

¢ © ¢ ¢ ¢

@ Disadvantages:
o Slower (than using static instrumentation)

@ Code must be inserted before every execution
@ Code is usually executed in some kind of low-level virtual machine

@ Problematic access to higher level information (e.g. names of variables)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 6 /29

Monitoring Multi-threaded C/C++ Programs

What we need to monitor:
@ Threads (creation, termination)
o Usually done by calling suitable library functions
@ Synchronisation among threads (lock, unlock, wait, signal)
@ Usually done by calling suitable library functions
@ Memory accesses (reads and writes)
o Performed by instructions

The analyser should be notified:
@ When some event is about to happen (before notifications)

@ When some event just happened (after notifications)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012

Monitoring Execution of Functions

Naive approach: instrument appropriate call instructions
@ Must analyse all call instructions in the binary and its libraries

@ Code inserted after call instructions might not be executed

Better approach: wrap the monitored functions in other functions
@ Must know the signature of the original function

@ Calling the original function from the wrapper function might be slow

Quicker approach: instrument the code of the monitored functions
@ Insert the monitoring code

o Before the first instruction of the function
o Before every return instruction in the function

@ Decreases the instrumentation overhead

@ More generic (no need to know signatures etc.)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 8 /29

Monitoring Execution of Functions: A Problem

At the binary level, it is possible to return from a function even from code
NOT belonging to that function:

Program'’s binary pthread library

7 ae20 <unlock >:

; ae20: mov $0x1,%esi
| /' _ae25: jmpq ad70 <unlock_usr>
| .. : / //
| 401113: mov $0x602540,%edi /|
->401118: callqg 400e80 <unlock>~- \
40111d: test %eax,%eax&\ “+ad70 <unlock_usr >:

. T S ad70: mov %rdi ,%rdx
"~ ada5: xor %eax,%eax
“-ada7: retq

We called unlock, but returned from unlock_usr!

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012

Monitoring Execution of Functions: A Solution

Idea:
@ Functions usually do not jump outside of the code of the library itself

Solution:
@ Insert the monitoring code before every return instruction in the
library
@ Save the current state of the thread's call stack before the monitored
function is executed (value of the stack pointer is sufficient)
@ Before a return instruction is executed

o Compare the current and previous value of the stack pointer
@ Issue a notification if the values match

Exception:
@ Functions from the Win32 API's kernel32.d11 library may jump to
the kernelbase.d1l library

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 10 / 29

Monitoring Special Types of Instructions

Atomic instructions (e.g. xadd):
@ Access memory more than once

@ The monitoring code should issue a special notification informing the
analyser that some memory accesses happened atomically

Conditional and repeatable instructions (e.g. rep stos):

® Most of them access memory
o Might be executed:
o A fixed number of times
@ Until a condition is met
o Not at all
@ The monitoring code must ensure that the notification is issued as
many times as the access actually happened (possibly not at all!)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 11 /29

Abstracting Synchronisation Primitives

Thread management and synchronisation in C/C++:
@ Usually done by calling suitable library functions

@ Many different libraries can be used for this purpose

To allow dynamic analysers to be reused with multiple libraries:

@ A support for abstracting the low-level details is needed

The abstraction can hardly be fully automated—uwe require the user to
specify:
@ Which functions perform certain types of thread-related operations
@ Which arguments represent the synchronisation resources

@ How to transform synchronisation resources to their abstract
identifications

Jan Fiedor (BUT Noise-Based Testing and Analysis PADTAD, July 16, 2012 12 / 29
/

Plan of the talk

© Fine-Grained Combinations of Noise

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 13 /29

Noise Injection Basics

Noise Injection Techniques:
@ Aim at increasing the number of different witnessed interleavings

@ Disturb the scheduling of threads by inserting noise generating code
@ e.g., by inserting calls of yield or sleep

@ Force the program to switch threads at times it would normally
seldom do it

User may typically influence:
@ Type of noise (e.g., sleep or yield noise)
@ Noise frequency (how often the noise should occur)

@ Noise strength (how strong the noise should be)

Jan Fiedor (BUT Noise-Based Testing and Analysis PADTAD, July 16, 2012 14 / 29
/

Fine-Grained Combinations of Noise

Idea (for data races):

@ Data races arise when there are two unsynchronised accesses to the
same memory location and at least one of the accesses is a write
access

@ When we encounter a memory access, the best we can do is to search
the other threads for the second (conflicting) access

Using the same settings for all accesses:

@ The yield noise
@ Only a small part of the executions of the other threads is searched

@ The sleep noise
o Blocks the execution of the thread performing the first access
o Gives us more time to search the other threads for the second access

15 / 29

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012

Fine-Grained Combinations of Noise

Idea (for data races) revisited:
@ The sleep noise seems better than the yield noise, however:
o It blocks not only the thread performing the first access, but also the
threads we want to search for the second (conflicting) access
@ Injecting a larger amount of the sleep noise may considerably slow
down the execution
@ Lower the amount of noise injected into the other threads so they
perform more memory accesses

@ The two unsychronised accesses are often different types of memory
accesses (one must be write, the other is often read)

@ Lower the amount of noise injected into the other threads by using
different settings for different types of memory accesses (reads/writes)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 16 / 29

Useful Combinations of Noise (for Data Races)

Use the sleep noise only, but with different values of strength:
@ Use bigger strength for one type of memory accesses
@ Use considerably lower strength for the other type of memory accesses
@ Still blocks the other threads, just a bit less than before

Use different types of noises:
@ Use the sleep noise for one type of memory accesses
@ Use the yield noise for the other type of memory accesses
@ Does not block the other threads much
@ Forces the program to switch threads more often
°

Helps more threads to perform more memory accesses

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012

Plan of the talk

© Experiments

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 18 / 29

We used 116 multi-threaded C/C++ programs for the experiments:
@ Student programs implementing a simple ticket algorithm
@ Use the pthread library for thread management and synchronisation

@ Found errors in around 20 % of them (most of them rated full points)

We focused on detection of:

@ Data races (wrong synchronisation of accesses to shared variables)

@ Used noise injection in conjunction with dynamic analysis
@ Used a simple AtomRace detector to detect data races

@ Assertion errors (erroneous usage of the pthread library)
@ Used noise injection in conjunction with normal testing

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 19 / 29

Interesting Results for Data Races

Using too much noise may actually suppress the errors

% of err. runs

Noise configuration \ Program t01 t02

instrumented, no sleep or yield noise 24 | 11.8

sleep (50% frequency, 10 ms of sleep) 69.2 | 46.6

sleep (10% frequency, 10 ms of sleep) 64.0 | 69.2

rs-sleep (50% frequency, 0-10 ms of sleep) 96.4 | 87.8

rs-sleep (10% frequency, 0-10 ms of sleep) 21.4 | 55.8

sleep (50% frequency, 10 ms of sleep) / read 20 ms / write 5 ms | 64.8 | 89.4
sleep (10% frequency, 10 ms of sleep) / read sleep / write yield 34.2 | 81.0

To deal with this problem, one may:
@ Lower the frequency (or strength)
@ Use random strength instead of a fixed one

@ Use different noise injection settings for different locations

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 20 /29

Interesting Results for Data Races

Using different noise injection settings also helps in many other cases

% of err. runs

Noise configuration \ Program t06 t07

instrumented, no sleep or yield noise 1.0 1.6

sleep (50% frequency, 10 ms of sleep) 53.6 | 69.4

sleep (10% frequency, 10 ms of sleep) 40.2 | 70.4

rs-sleep (50% frequency, 0-10 ms of sleep) 31.0 | 79.0

sleep (50% frequency, 10 ms of sleep) / read 5 ms / write 20 ms | 92.6 | 96.2
yield (50% frequency, 10 calls of yield) / read yield / write sleep | 95.0 | 99.6

Different noise injection settings can be used to speed up the execution

% of err. runs

Noise configuration \ Program t04

instrumented, no sleep or yield noise 1.2

sleep (50% frequency, 10 ms of sleep) 100.0

sleep (10% frequency, 10 ms of sleep) 56.0

rs-sleep (50% frequency 0-10 ms of sleep) 86.2

rs-sleep (10% frequency, 0—10 ms of sleep) 11.8

sleep (50% frequency, 10 ms of sleep) / read yield / write sleep 100.0
sleep (10% frequency, 10 ms of sleep) / read yield / write sleep 96.8

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 21 /29

Interesting Results for Data Races

Different noise injection settings are sometimes the only thing that helps

% of err. runs

Noise configuration \ Program t05

instrumented, no sleep or yield noise 0.0

sleep (50% frequency, 10 ms of sleep) 1.2

sleep (10% frequency, 10 ms of sleep) 5.4

rs-sleep (50% frequency, 0—10 ms of sleep) 0.6

rs-sleep (10% frequency, 0—10 ms of sleep) 0.0

sleep (50% frequency, 10 ms of sleep) / read 5 ms / write 20 ms 43.0
sleep (10% frequency, 10 ms of sleep) / read sleep / write yield 62.4

It is better to inject stronger noise before rarer accesses

% of err. runs
Noise configuration \ Program t04 t05
instrumented, no sleep or yield noise 1.2 0.0
sleep (10% frequency, 10 ms of sleep) / read sleep / write yield 74 | 62.4
sleep (10% frequency, 10 ms of sleep) / read yield / write sleep | 96.8 9.6
yield (10% frequency, 10 calls of yield) / read sleep / write yield 6.2 | 64.4
yield (10% frequency, 10 calls of yield) / read yield / write sleep | 94.4 7.2

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012

Interesting Results for Assertion Errors

Even a very weak noise generated by the inserted code helps significantly
® The yield noise sometimes helps to achieve better results
@ The sleep noise actually hides the errors back

@ Using different noise injection settings for different types of memory
accesses does not help much

% of err. runs

Noise configuration \ Program t02 | t12| tl4
normal run 0.0| 0.0 0.0
instrumented, no sleep or yield noise 48.050.8| 8.0
sleep (50% frequency, 10 ms of sleep) 0.0 0.0 1.2
yield (50% frequency, 10 calls of yield) 62.4(51.0| 8.8
yield (50% frequency, 20 calls of yield) 64.6 [55.2| 6.6

yield (50% frequency, 10 calls of yield) / read 20 calls / write 5 calls [62.4]| 0.0| 7.6
yield (50% frequency, 10 calls of yield) / read 5 calls / write 20 calls [64.0| 0.0 |10.4
yield (10% frequency, 10 calls of yield) / read sleep / write yield 60.6| 0.0| 9.4
yield (10% frequency, 10 calls of yield) / read yield / write sleep 474 0.0| 3.4

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 23 /29

Latest Results

Firefox 10 browser
@ So far without a test harness
@ Found several known data races considered as harmless

@ Proved that the tool can handle even very large programs

Unicap libraries: libraries for concurrent video processing
@ Found several previously unknown data races

@ Some of them cause programs using these libraries to crash

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 24 /29

Plan of the talk

© Conclusion

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 25 /29

Conclusion

@ Several problems which arise when monitoring C/C++ programs on
the binary level were discussed

@ Solutions to these problems were proposed
@ An improvement of the noise injection technology was proposed

@ The proposed solutions and improvements were validated on a set of
C/C++ programs

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 26 /29

Support for other multi-threading libraries than pthreads

(]

Support for backtraces

More experiments

(]

More sophisticated types of noises

New detectors for concurrency errors

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 27 /29

Related Work

IBM ConTest

@ Only for Java, not freely available

ConTest for C
@ Source level instrumentation
@ Not supported anymore

@ Not available for download

Fjalar
@ Dynamic binary instrumentation

@ Primarily designed to simplify access to compile-time and memory
information

@ Does not provide any concurrency-related information

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 28 /29

End of presentation

Thank you for your attention!

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012

	Introduction
	Monitoring Multi-threaded C/C++ Programs
	Fine-Grained Combinations of Noise
	Experiments
	Conclusion

