
Noise-Based Testing and Analysis of Multi-threaded

C/C++ Programs on the Binary Level

Jan Fiedor, Tomáš Vojnar

Brno University of Technology (BUT)

PADTAD, July 16, 2012

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 1 / 29

Plan of the talk

1 Introduction

2 Monitoring Multi-threaded C/C++ Programs

3 Fine-Grained Combinations of Noise

4 Experiments

5 Conclusion

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 2 / 29

Introduction

Testing

One of the most common ways to discover errors
Detects only errors witnessed in the given execution
Many repetitions needed due to the non-deterministic thread scheduling
When done näıvely, the repeated execution needs not differ much, and
many errors may be missed

Dynamic analysis

Extrapolates the witnessed behaviour
May detect errors not witnessed in the given execution
Needs to insert some monitoring code into the program

Noise injection

Disturbs the scheduling of threads to see uncommon executions
Increases the chances to detect errors
Useful for both testing and dynamic analysis

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 3 / 29

Plan of the talk

1 Introduction

2 Monitoring Multi-threaded C/C++ Programs

3 Fine-Grained Combinations of Noise

4 Experiments

5 Conclusion

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 4 / 29

Monitoring C/C++ Programs

Monitoring (and noise injection) code might be inserted on several levels:

Source code level

Code inserted to the source code before compilation

Level of the intermediate code

Code inserted to the compiler’s intermediate code during compilation

Binary level

Code inserted to the program’s binary after compilation

On the binary level, the monitoring code might be inserted:

By modifying the binary of a program before it is executed

Static binary instrumentation

By modifying the binary at the run-time in the memory

Dynamic binary instrumentation

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 5 / 29

Monitoring C/C++ Programs on the Binary Level

We use dynamic binary instrumentation to insert the monitoring code:

Advantages:

No need to have the source code of the program
More precise (insertion after all optimisations)
More transparent (no need to have 2 separate versions of libraries)
Easy handling of assembly code inserted to C/C++ code
Easy access to low level information (e.g. register allocations)
Can handle self-generating and self-modifying code

Disadvantages:
Slower (than using static instrumentation)

Code must be inserted before every execution

Code is usually executed in some kind of low-level virtual machine

Problematic access to higher level information (e.g. names of variables)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 6 / 29

Monitoring Multi-threaded C/C++ Programs

What we need to monitor:

Threads (creation, termination)

Usually done by calling suitable library functions

Synchronisation among threads (lock, unlock, wait, signal)

Usually done by calling suitable library functions

Memory accesses (reads and writes)

Performed by instructions

The analyser should be notified:

When some event is about to happen (before notifications)

When some event just happened (after notifications)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 7 / 29

Monitoring Execution of Functions

Näıve approach: instrument appropriate call instructions

Must analyse all call instructions in the binary and its libraries

Code inserted after call instructions might not be executed

Better approach: wrap the monitored functions in other functions

Must know the signature of the original function

Calling the original function from the wrapper function might be slow

Quicker approach: instrument the code of the monitored functions

Insert the monitoring code

Before the first instruction of the function
Before every return instruction in the function

Decreases the instrumentation overhead

More generic (no need to know signatures etc.)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 8 / 29

Monitoring Execution of Functions: A Problem

At the binary level, it is possible to return from a function even from code
NOT belonging to that function:

Program’s binary pthread library

. . : . . .
401113: mov $0x602540 ,% ed i

401118: c a l l q 400 e80 <unlock>
40111d : t e s t %eax ,%eax

. . : . . .

ae20 <unlock >:
ae20 : mov $0x1 ,% e s i

ae25 : jmpq ad70 <un l o ck u s r>

ad70 <un l o ck u s r >:
ad70 : mov %r d i ,% rdx

. . : . . .
ada5 : xor %eax ,%eax

ada7 : r e tq

We called unlock, but returned from unlock usr!

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 9 / 29

Monitoring Execution of Functions: A Solution

Idea:

Functions usually do not jump outside of the code of the library itself

Solution:

Insert the monitoring code before every return instruction in the
library

Save the current state of the thread’s call stack before the monitored
function is executed (value of the stack pointer is sufficient)

Before a return instruction is executed

Compare the current and previous value of the stack pointer
Issue a notification if the values match

Exception:

Functions from the Win32 API’s kernel32.dll library may jump to
the kernelbase.dll library

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 10 / 29

Monitoring Special Types of Instructions

Atomic instructions (e.g. xadd):

Access memory more than once

The monitoring code should issue a special notification informing the
analyser that some memory accesses happened atomically

Conditional and repeatable instructions (e.g. rep stos):

Most of them access memory

Might be executed:

A fixed number of times
Until a condition is met
Not at all

The monitoring code must ensure that the notification is issued as
many times as the access actually happened (possibly not at all!)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 11 / 29

Abstracting Synchronisation Primitives

Thread management and synchronisation in C/C++:

Usually done by calling suitable library functions

Many different libraries can be used for this purpose

To allow dynamic analysers to be reused with multiple libraries:

A support for abstracting the low-level details is needed

The abstraction can hardly be fully automated—we require the user to
specify:

Which functions perform certain types of thread-related operations

Which arguments represent the synchronisation resources

How to transform synchronisation resources to their abstract
identifications

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 12 / 29

Plan of the talk

1 Introduction

2 Monitoring Multi-threaded C/C++ Programs

3 Fine-Grained Combinations of Noise

4 Experiments

5 Conclusion

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 13 / 29

Noise Injection Basics

Noise Injection Techniques:

Aim at increasing the number of different witnessed interleavings

Disturb the scheduling of threads by inserting noise generating code

e.g., by inserting calls of yield or sleep

Force the program to switch threads at times it would normally
seldom do it

User may typically influence:

Type of noise (e.g., sleep or yield noise)

Noise frequency (how often the noise should occur)

Noise strength (how strong the noise should be)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 14 / 29

Fine-Grained Combinations of Noise

Idea (for data races):

Data races arise when there are two unsynchronised accesses to the
same memory location and at least one of the accesses is a write
access

When we encounter a memory access, the best we can do is to search
the other threads for the second (conflicting) access

Using the same settings for all accesses:

The yield noise

Only a small part of the executions of the other threads is searched

The sleep noise

Blocks the execution of the thread performing the first access
Gives us more time to search the other threads for the second access

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 15 / 29

Fine-Grained Combinations of Noise

Idea (for data races) revisited:

The sleep noise seems better than the yield noise, however:

It blocks not only the thread performing the first access, but also the
threads we want to search for the second (conflicting) access
Injecting a larger amount of the sleep noise may considerably slow
down the execution

Lower the amount of noise injected into the other threads so they
perform more memory accesses

The two unsychronised accesses are often different types of memory
accesses (one must be write, the other is often read)

Lower the amount of noise injected into the other threads by using
different settings for different types of memory accesses (reads/writes)

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 16 / 29

Useful Combinations of Noise (for Data Races)

Use the sleep noise only, but with different values of strength:

Use bigger strength for one type of memory accesses

Use considerably lower strength for the other type of memory accesses

Still blocks the other threads, just a bit less than before

Use different types of noises:

Use the sleep noise for one type of memory accesses

Use the yield noise for the other type of memory accesses

Does not block the other threads much

Forces the program to switch threads more often

Helps more threads to perform more memory accesses

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 17 / 29

Plan of the talk

1 Introduction

2 Monitoring Multi-threaded C/C++ Programs

3 Fine-Grained Combinations of Noise

4 Experiments

5 Conclusion

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 18 / 29

Experiments

We used 116 multi-threaded C/C++ programs for the experiments:

Student programs implementing a simple ticket algorithm

Use the pthread library for thread management and synchronisation

Found errors in around 20 % of them (most of them rated full points)

We focused on detection of:

Data races (wrong synchronisation of accesses to shared variables)

Used noise injection in conjunction with dynamic analysis
Used a simple AtomRace detector to detect data races

Assertion errors (erroneous usage of the pthread library)

Used noise injection in conjunction with normal testing

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 19 / 29

Interesting Results for Data Races

Using too much noise may actually suppress the errors

% of err. runs
Noise configuration \ Program t01 t02

instrumented, no sleep or yield noise 2.4 11.8
sleep (50% frequency, 10 ms of sleep) 69.2 46.6
sleep (10% frequency, 10 ms of sleep) 64.0 69.2

rs-sleep (50% frequency, 0–10 ms of sleep) 96.4 87.8
rs-sleep (10% frequency, 0–10 ms of sleep) 21.4 55.8

sleep (50% frequency, 10 ms of sleep) / read 20 ms / write 5 ms 64.8 89.4
sleep (10% frequency, 10 ms of sleep) / read sleep / write yield 34.2 81.0

To deal with this problem, one may:

Lower the frequency (or strength)

Use random strength instead of a fixed one

Use different noise injection settings for different locations

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 20 / 29

Interesting Results for Data Races

Using different noise injection settings also helps in many other cases

% of err. runs
Noise configuration \ Program t06 t07

instrumented, no sleep or yield noise 1.0 1.6
sleep (50% frequency, 10 ms of sleep) 53.6 69.4
sleep (10% frequency, 10 ms of sleep) 40.2 70.4

rs-sleep (50% frequency, 0–10 ms of sleep) 31.0 79.0
sleep (50% frequency, 10 ms of sleep) / read 5 ms / write 20 ms 92.6 96.2
yield (50% frequency, 10 calls of yield) / read yield / write sleep 95.0 99.6

Different noise injection settings can be used to speed up the execution

% of err. runs
Noise configuration \ Program t04

instrumented, no sleep or yield noise 1.2
sleep (50% frequency, 10 ms of sleep) 100.0
sleep (10% frequency, 10 ms of sleep) 56.0

rs-sleep (50% frequency 0–10 ms of sleep) 86.2
rs-sleep (10% frequency, 0–10 ms of sleep) 11.8

sleep (50% frequency, 10 ms of sleep) / read yield / write sleep 100.0
sleep (10% frequency, 10 ms of sleep) / read yield / write sleep 96.8

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 21 / 29

Interesting Results for Data Races

Different noise injection settings are sometimes the only thing that helps

% of err. runs
Noise configuration \ Program t05

instrumented, no sleep or yield noise 0.0
sleep (50% frequency, 10 ms of sleep) 1.2
sleep (10% frequency, 10 ms of sleep) 5.4

rs-sleep (50% frequency, 0–10 ms of sleep) 0.6
rs-sleep (10% frequency, 0–10 ms of sleep) 0.0

sleep (50% frequency, 10 ms of sleep) / read 5 ms / write 20 ms 43.0
sleep (10% frequency, 10 ms of sleep) / read sleep / write yield 62.4

It is better to inject stronger noise before rarer accesses

% of err. runs
Noise configuration \ Program t04 t05

instrumented, no sleep or yield noise 1.2 0.0
sleep (10% frequency, 10 ms of sleep) / read sleep / write yield 7.4 62.4
sleep (10% frequency, 10 ms of sleep) / read yield / write sleep 96.8 9.6
yield (10% frequency, 10 calls of yield) / read sleep / write yield 6.2 64.4
yield (10% frequency, 10 calls of yield) / read yield / write sleep 94.4 7.2

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 22 / 29

Interesting Results for Assertion Errors

Even a very weak noise generated by the inserted code helps significantly

The yield noise sometimes helps to achieve better results

The sleep noise actually hides the errors back

Using different noise injection settings for different types of memory
accesses does not help much

% of err. runs
Noise configuration \ Program t02 t12 t14

normal run 0.0 0.0 0.0
instrumented, no sleep or yield noise 48.0 50.8 8.0
sleep (50% frequency, 10 ms of sleep) 0.0 0.0 1.2
yield (50% frequency, 10 calls of yield) 62.4 51.0 8.8
yield (50% frequency, 20 calls of yield) 64.6 55.2 6.6

yield (50% frequency, 10 calls of yield) / read 20 calls / write 5 calls 62.4 0.0 7.6
yield (50% frequency, 10 calls of yield) / read 5 calls / write 20 calls 64.0 0.0 10.4
yield (10% frequency, 10 calls of yield) / read sleep / write yield 60.6 0.0 9.4
yield (10% frequency, 10 calls of yield) / read yield / write sleep 47.4 0.0 3.4

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 23 / 29

Latest Results

Firefox 10 browser

So far without a test harness

Found several known data races considered as harmless

Proved that the tool can handle even very large programs

Unicap libraries: libraries for concurrent video processing

Found several previously unknown data races

Some of them cause programs using these libraries to crash

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 24 / 29

Plan of the talk

1 Introduction

2 Monitoring Multi-threaded C/C++ Programs

3 Fine-Grained Combinations of Noise

4 Experiments

5 Conclusion

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 25 / 29

Conclusion

Several problems which arise when monitoring C/C++ programs on
the binary level were discussed

Solutions to these problems were proposed

An improvement of the noise injection technology was proposed

The proposed solutions and improvements were validated on a set of
C/C++ programs

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 26 / 29

Future Work

Support for other multi-threading libraries than pthreads

Support for backtraces

More experiments

More sophisticated types of noises

New detectors for concurrency errors

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 27 / 29

Related Work

IBM ConTest

Only for Java, not freely available

ConTest for C

Source level instrumentation

Not supported anymore

Not available for download

Fjalar

Dynamic binary instrumentation

Primarily designed to simplify access to compile-time and memory
information

Does not provide any concurrency-related information

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 28 / 29

End of presentation

Thank you for your attention!

Jan Fiedor (BUT) Noise-Based Testing and Analysis PADTAD, July 16, 2012 29 / 29

	Introduction
	Monitoring Multi-threaded C/C++ Programs
	Fine-Grained Combinations of Noise
	Experiments
	Conclusion

