C AND OPENCL GENERATION FROM MATLAB

LUÍS REIS, JOÃO BISPO, JOÃO CARDOSO

Faculty of Engineering
University of Porto

16th of April, 2015
Multicore Software Engineering, Performance, Applications, and Tools (MUSEPAT)
30th ACM/SIGAPP Symposium On Applied Computing (SAC’15)
OUTLINE

- Introduction
- Motivation
- MATISSE OpenCL back-end
- Results
- Conclusions and Future Work
Parallelism in CPUs
- SIMD: *Data parallelism* on a single thread
- Multicore: Requires *Task parallelism*.

Both are required for maximum efficiency.
THE AGE OF PARALLELISM – GPU

- Initially GPUs mostly used for graphical computing
 - Could be used for other operations, but that was far too much work
 - Usually have their own memory
- GPGPUs: **General-Purpose** Graphics Processing Unit
 - Still focused on graphics, still tend to have a separate memory
 - Easier to program now
- GPGPUs require parallelism:
 - Take longer than CPUs for sequential tasks
 - With parallelism, speedups of 1000x are possible
Some approaches let the programmer specify parallelism declaratively

 “This part of the code can be made parallel”

 Acceptable performance with relatively small effort.

 Code is annotated with “directives” – code that is recognized by the compiler

 Examples are OpenMP and OpenACC
- Directive-driven extensions for C, C++ or FORTRAN.
- Compilers automatically generate the GPGPU code and communications.
- Suitable for accelerators, including GPGPUs
 - Data-transfers are explicit, using copyin, copyout, copy and present.
Old days:
- Shader languages: HLSL, GLSL

More recently:
- GPGPU-specific languages: CUDA, OpenCL
- CUDA is a language by NVIDIA, extends C, C++ or Fortran
- OpenCL is a standard by Khronos, API + C-based language
PROGRAMMING MODELS – OPENCL

- Programming language and API (C/C++ inspired)
- Initially for GPGPU, currently supports multicore CPUs and even FPGAs
- Supported by Intel, AMD, NVIDIA, ARM, Qualcomm, Apple, ALTERA and Xilinx
- Parallel parts in OpenCL, remaining code in host language (e.g., C)

```c
void kernel_name(
    global int* result_buffer,
    global int* src_buffer) {

    size_t thread_id = get_global_id(0);

    int src_value = src_buffer[thread_id];

    result_buffer[thread_id] =
        thread_id < 128 ?
            src_value * 2 : src_value * 3;
}
```
To get the most performance we need low-level code (C, OpenCL)

However, low-level code usually is not performance portable

To maximize performance, different targets require different code

Additionally, may have special requirements

- Embedded systems without floating-point HW units, or with units that perform poorly
- HW synthesis (compliance to different tools)
Possible Solution:
- Start from clean implementation, specialize to target

Problem:
- Hard to transform low-level code, too many implementation details

Our approach:
- High-level description (MATLAB)
- Augmented with information about implementation (LARA aspects)
MATISSE – OPENCL BACKEND

- Proof-of-concept OpenCL backend
 - Developed during MSc
- MATLAB compiler that generates C + OpenCL code
- Based on the MATISSE framework
- MATLAB code is extended with OpenACC-based directives
Regions of code are marked as parallel
- Each loop iteration is independent of the others.

Copyin: Which variables are copied to the GPU before execution begins.

Copyout: Which variables are copied out of the GPU after execution ends.

Other directives are supported

```matlab
function A = my_matlab_func(x)
    A = ones(200, 100, 'single');

    %{
        acc parallel loop
        copyin(A) copyout(A)
    %}

    for i = 1:200
        A(i, 50) = i;
    end

    %acc end
end
```
MATISSE – OPENCL BACKEND

- We reuse and extend the MATISSE IRs:
 - MATLAB AST
 - C IR
- The MATISSE C backend handles sequential code sections.
- MATISSE CL overrides the code generator for the outlined functions.
 - Generates the OpenCL code and the C wrappers.
```c
kernel void cpxdotprod3_extracted1_mgf43mgf43mgf43mgf43s4s4mgf42mgf42 (  
global float* Arealdatal, int Arealdim1, int Arealdim2, int Arealdim3,  
...)
{
    size_t thread_id1;
    int j;
    size_t global_size1;
    int tmp_Iterations1;
    global_float_mat3_t Areal;
    ...
    int index;
    float Ar;
    float Ai;
    float Br;
    float Bi;

    thread_id1 = get_global_id(0);
    j = thread_id1 + 1;
    global_size1 = get_global_size(0);
    tmp_Iterations1 = global_size1;
    Areal.data = Arealdatal;
    Areal.dim1 = Arealdim1;
    ...
    index = j;
    Ar = matrix_get_mgf43_1(Areal, index);
    ...
    matrix_set_mgf42_1(Creal, index, (Ar * Br - (Ai * Bi)));
    matrix_set_mgf42_1(Cimag, index, (Ar * Bi + (Ai * Br)));
}
```
```c
void cpxdotprod3_extracted1_tffftftfiitff(...)
{
    cl_mem Arealdta;
    ...
    cl_kernel kernel;
    cl_int retval;
    cl_int Arealdim1;
    ...
    cl_event kevt;

    Arealdta = clCreateBuffer(...);
    clhelper_check_return("clCreateBuffer", retval);
    ...

    kernel = clCreateKernel(context->program,
                             "cpxdotprod3_extracted1_mgf43mgf43mgf43mgf43s4s4mgf42mgf42", &retval);
    clhelper_check_return("clCreateKernel", retval);
    retval = clSetKernelArg(kernel, 0, sizeof(cl_mem), &Arealdta);
    clhelper_check_return("clSetKernelArg", retval);
    ...

    retval = clEnqueueNDRangeKernel(...);
    clhelper_check_return("clEnqueueNDRangeKernel", retval);

    copy_alloc_f(Creal, Creal_out);
    retval = clEnqueueReadBuffer(...);
    clhelper_check_return("clEnqueueReadBuffer", retval);
    ...
}
```
BENCHMARKS

- Benchmarks:
 - Reused some benchmarks already used for MATISSE C
 - Most are from embedded computing
 - Matmul: Naive implementation of matrix multiplication
 - Monte Carlo option pricing: Adapted from a MathWorks example
RESULTS – TOTAL TIME

- CPU: AMD A10-7850K@3.7GHz w/ GPU (integrated), GPU: R7 280X (discrete)
- Includes time spent on data transfers
RESULTS – MATMUL

- Modified matmul (in MATLAB) with optimizations from nVidia exemple
 - Loop Tiling
 - Local Memory
RESULTS – MATMUL

- Modified matmul (in MATLAB) with optimizations from nVidia example
 - Loop Tiling
 - Local Memory

<table>
<thead>
<tr>
<th>1024x1024</th>
<th>matmul (s)</th>
<th>matmul_nv (s)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>9.1</td>
<td>2.0</td>
<td>4.6×</td>
</tr>
<tr>
<td>GPU (int.)</td>
<td>0.19</td>
<td>0.062</td>
<td>3.1×</td>
</tr>
<tr>
<td>GPU (disc.)</td>
<td>0.028</td>
<td>0.035</td>
<td>0.8×</td>
</tr>
</tbody>
</table>
We were able to compile and run our programs on an Odroid board

- ARM’s big.LITTLE configuration and a PowerVR SGX544MP3 GPU
- Android 4.2.2 (though we bypassed Dalvik entirely)
- The same processor used by some smartphones.
- Preliminary results, only

Sadly, we were rarely able to obtain speedups

- Only 5% faster in matrix multiplication.
- 75% slower for the dilate benchmark.
- Monte Carlo Option Pricing can have statistically insignificant speedups (less than 95% confidence for \(N = 5000 \)), or significant slowdowns (30% slower for \(N = 1000 \))

We hope to improve these results with future optimizations (such as thread coarsening and use of texture memory)
CONCLUSIONS

- Proof-of-concept OpenCL back-end from MATLAB
 - Based on the MATISSE framework
- Good results on desktop GPUs
- Embedded systems’ SOC performance needs more time for experiments and analysis.

Future Work:
- Improve MATLAB compatibility (take advantage of idiomatic operations)
- Specialize code according to target
%%
acc parallel loop

copyin(readonly Areal, readonly Aimag, readonly Breal, readonly Bimag, numElements)

copyout(Creal, Cimag)
%
for j=1:numElements
 index=j;
 Ar = Areal(index);
 Ai = Aimag(index);
 Br = Breal(index);
 Bi = Bimag(index);
 Creal(index) = Ar*Br-Ai*Bi;
 Cimag(index) = Ar*Bi+Ai*Br;
end
%!parallel
Creal = Areal.*Breal-Aimag.*Bimag;
Cimag = Areal.*Bimag+Aimag.*Breal;
%!end

%!parallel
Creal = Areal.*Breal-Aimag.*Bimag;
Cimag = Areal.*Bimag+Aimag.*Breal;
%!end
THANK YOU!
Questions?

Demo of MATISSE (C only):
http://specs.fe.up.pt/tools/matisse/
MEGHA [Prasad et al, APPLC 2012]:
- Compiles a subset of MATLAB to CUDA

HLLC/ParaM
- Source-to-source [Shei et al, ICS 2011]
 - Outputs MATLAB with GPUmat API calls
- Alternative approach: [Shei et al, INTERACT 2011]
 - Outputs MATLAB with calls to C++ and CUDA.

Our approach: MATLAB to C + OpenCL
RESULTS – MATISSE C VS MATLAB

RESULTS – KERNAL TIME

- Same computer, Kernel time **only** (no data transfers, no C segments)
MATLAB GPU APIS

- MathWorks Parallel Computing Toolbox:
 - CUDA API for MATLAB
 - Official, supported

- GPUmat
 - Open-source
 - CUDA API
 - Open-source, last update on 2012

- Jacket
 - CUDA or OpenCL
 - Discontinued
LIMITATIONS

- OpenCL back-end introduced too early in the tool-chain
 - Does not take advantage of current C transformations (e.g., element-wise)
 - Only a small subset of functions are supported within a parallel block
- Odroid performance is poor
- Idiomatic: A = B * C;
- Simple and slow, three nested loops
- Fine-tuned with directives: separate file
OpenMP: Standard for C, C++ and FORTRAN.

- Very CPU-centric.
- Code is annotated with directives.
- Compilers automatically generate the code to launch threads.

```c
#include <stdio.h>

int main() {
    int max = 100;

    int sum = 0;
    #pragma omp parallel for 
    reduction(+:x)
    for (int i = 0; i < max; ++i) {
        sum += i * i;
    }

    printf("Sum of squares up to %d is %d\n", max, sum);

    return 0;
}
```
Monte Carlo Option Pricing:
- MATLAB: For 100 iterations, 12 seconds
- MATLAB: For 1000 iterations, 113 seconds
- MATISSE C: For 10000 iterations, takes 24 seconds
- MATISSE OpenCL: For 10000 iterations, takes 0.02 seconds